Error Estimates for Time-discretizations for the Velocity Tracking Problem for Navier-stokes Flows by Penalty Methods

نویسندگان

  • Konstantinos Chrysafinos
  • Jie Shen
  • KONSTANTINOS CHRYSAFINOS
چکیده

Semi-discrete in time approximations of the velocity tracking problem are studied based on a pseudo-compressibility approach. Two different methods are used for the analysis of the corresponding optimality system. The first one, the classical penalty formulation, leads to estimates of order k + ε, under suitable regularity assumptions. The estimate is based on previously derived results for the solution of the unsteady Navier-Stokes problem by penalty methods (see e.g. Jie Shen [26]) and the Brezzi-Rappaz-Raviart theory (see e.g. [12]). The second one, based on the artificially compressible optimality system, leads to an improved estimate of the form k + εk for the linearized system.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Isogeometric Divergence-conforming B-splines for the Steady Navier-Stokes Equations

We develop divergence-conforming B-spline discretizations for the numerical solution of the steady Navier-Stokes equations. These discretizations are motivated by the recent theory of isogeometric discrete differential forms and may be interpreted as smooth generalizations of Raviart-Thomas elements. They are (at least) patchwise C and can be directly utilized in the Galerkin solution of steady...

متن کامل

Optimization with the time-dependent Navier-Stokes equations as constraints

In this paper, optimal distributed control of the time-dependent Navier-Stokes equations is considered. The control problem involves the minimization of a measure of the distance between the velocity field and a given target velocity field. A mixed numerical method involving a quasi-Newton algorithm, a novel calculation of the gradients and an inhomogeneous Navier-Stokes solver, to find the opt...

متن کامل

Interior Penalty Finite Element Approximation of Navier-stokes Equations and Application to Free Surface Flows

In the present work, we investigate mathematical and numerical aspects of interior penalty finite element methods for free surface flows. We consider the incompressible Navier-Stokes equations with variable density and viscosity, combined with a front capturing model using the level set method. We formulate interior penalty finite element methods for both the Navier-Stokes equations and the lev...

متن کامل

Output error estimation strategies for discontinuous Galerkin discretizations of unsteady convectiondominated flows

We study practical strategies for estimating numerical errors in scalar outputs calculated from unsteady simulations of convection-dominated flows, including those governed by the compressible Navier–Stokes equations. The discretization is a discontinuous Galerkin finite element method in space and time on static spatial meshes. Time-integral quantities are considered for scalar outputs and the...

متن کامل

Error of the Two-step Bdf for the Incompressible Navier-stokes Problem

The incompressible Navier-Stokes problem is discretized in time by the two-step backward differentiation formula. Error estimates are proved under feasible assumptions on the regularity of the exact solution avoiding hardly fulfillable compatibility conditions. Whereas the time-weighted velocity error is of optimal second order, the time-weighted error in the pressure is of first order. Subopti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006